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 INTRODUCTION: Maruszewski 21 presented the 
theoretical consideration and developments of the 
simultaneous interactions of elastic, thermal and diffu-
sion of charge carrier’s fields in semiconductors. 
Maruszewski 2 formulated the problem of interaction 
of various fields mathematically. Some research-
es 63 modified Fourier law of heat conduction and 
constitutive relations so as to obtain a hyperbolic 
equation for heat conduction. 
 

FORMULATION OPF THE PROBLEM: We con-
sider a homogeneous isotropic, thermoelastic semi 
conducting plate of thickness 2d initially at uniform 
temperature 0T  and in the undisturbed state. The basic 
governing equations for such a medium are taken as 2  
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 , are the lame constants; iu  is the elastic dis-
placement;  is the density of the semiconductor; 

  ,  are the elastodiffusive constants; T  is the 
thermo elastic constant; K is the coefficient of the 
heat conduction; nqm , pqm , qrm , qrm are the Pelti-
er-Seebeck-Dufour-Soret- like constants; pnQ ttt ,,  
are the relaxation times of heat, electron, and hole 
fields; eC  is the specific heat; p ,  are the 
thermo diffusive constants:  pQQpQn aaaaa ,,,,   
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are the flux like constants; pDD , are the diffu-
sions coefficients of electrons and holes. Here n, p 
and 00 , pn  are respectively the non-equilibrium 
and equilibrium values of electrons and holes con-
centrations. 

 Upon introducing the potential functions    and 
  through the relation            

0.,  u    in equations (1) we obtain 
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where we have take  )0,,0(    and we have de-
fined the quantities 
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 The dashes have been suppressed for convience.     
The non-dimensional boundary conditions on the 
surface dx 3   are given by  
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Now we confine our discussion to the propagation of 
EN/EP and TN/TP waves in two dimensional semi-
conductor plates. 

SECULAR EQUATIONS:  
Elasto-diffusive Lamb Waves: Let us consider the 
case of the EN waves concerning the reciprocal dy-
namical interactions of the elastic and electron diffu-
sion field in the plate with boundaries dx 3 . The 
thermal and hole fields are omit-
ted )0,0,0( 00

nnnq
T aP   . The 

system of equations (3) with the help of appropriate 
boundary conditions (5) leads to the following secu-
lar equation  
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Where; 
 222   kP ,  22ikQ  , ii mikg 22  , 3,1i ,

  3,1,2  imL ii   

The secular equation for TP waves can be written 
from (6) by replacing N with P and n with p.  

Thermo-diffusive Lamb Wave: We now consider 
thermodiffusive wave we concerns the propagation 
of the T N waves in the plate with surfaces 

dx 3 .The system of governing equations (3) 
involving rest of the fields variables along with ap-
propriate choice of boundary conditions (5) provides 
us  
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The secular equation (6) and (7) being secular equa-
tion contain complete information regarding wave 
number, frequency , phase velocity and attenuation 
coefficients of the lamb waves in such physical 
models of the plate situations. The numerical and 
graphically comparison is being done for germanium 
and we found that germanium is better conductor 

then silicon. The interaction of mechanical, thermal 
and electron/hole charge carrier fields has attributed 
to significant modifications in the values of phase 
velocity and attenuation coefficients of elastic, ther-
mal and diffusive waves in the low and high fre-
quency regimes.   
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